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1 Objective: How to make small data big

In recent years, “big data” combined with machine learning has become a major interest in

statistical research. In areas where data are plentiful and comparably cheap to acquire, major

advances have been made in aggregating and analyzing large data sets. These advances have

become part of our everyday lives in the form of automated text translations, targeted advertise-

ments, autonomously driving vehicles, or improved health diagnostics using data from wearable

devices such as smartwatches.

The focus on such advances should not hide the fact that in the majority of cases data is

neither plentiful nor cheap. This is especially true in biomedical research with humans and

animals. In clinical research involving humans, but especially in basic and preclinical research

involving animals, the sample sizes of individual experiments are comparably low, ranging from

a few dozens subjects to a few hundreds – a far cry from what could be considered “big data”.

Taken together, however, these numerous small sets of data can rival the volume and variety of

more “traditional” big sets of data from genomics or transcriptomics (Ferguson et al., 2014) and

are very helpful for answering scientific questions, both old and new, for example in research on

neurotraumas (Ferguson et al., 2014), epilepsy (Wagenaar et al., 2015; Lapinlampi et al., 2017)

or autism (Hall et al., 2012).

The amount of available preclinical data is growing continuously, both in the form of sum-

mary statistics published in journal articles as well as in the form of sets of raw data stored in

data repositories. When combined, these sources of information offer the possibility to improve

the accuracy of preclinical assessments of potential drug candidates. When it comes to draw-

ing statistical inferences from available preclinical data, the numerous sets of data consisting of

small data tables stemming from individual studies are of great relevance because they often

contain valuable information from which to draw valid inferences about the safety and efficacy

of a novel substance. However, they often consist of only a few data tables containing granular

experimental results, for example from pilot studies, small exploratory studies, or larger confir-

matory experiments usually collected by individual laboratories during day-to-day research. As

such, there is often not much consistency with regard to the format and content of these data

tables, sometimes even within the same set of data.

Hence, combining data from various sources is easier said than done and still requires a lot

of statistical research to be considered feasible. One of the major challenges concerns the large

variability of the data and the heterogeneity of the source from which they stem–something that

is of particular relevance in preclinical research, that is, the phase of biomedical research just

before first-in-human trials.

In addition, existing methods to integrate data from heterogeneous biomedical sources are

scarce and were developed with clinical data in mind. Hence, they have not been adapted to

the specific settings of preclinical research—settings which are commonly riddled with more

systematic biases and exhibit more heterogeneity than clinical trials.

We therefore propose to build a hierarchical modeling framework to fuse and

analyze data from heterogeneous preclinical sources. Such a framework will allow

to draw more reliable statistical inferences from a large body of preclinical evidence that

consists of many sets of data with a high degree of variety and variability due to study

heterogeneity. The framework will be based on real and simulated data from preclinical

research settings.

1



2 Why this project matters

Modern biomedical research questions are complex and multifaceted, thereby producing a large

number of varied sets of data stemming from heterogeneous sources. To answer the same biomed-

ical question, preclinical researchers may rely on vastly differing experimental models, designs

and outcome measures, such as in vitro methods that use animal and human tissue and cell

cultures, in silico approaches created by mathematically modeling biochemical reactions, and

in vivo studies in different animal species. This can lead to large heterogeneity in the data

published by different laboratories—something that is particularly true for preclinical research.

Preclinical research describes the phase after the discovery of a potential therapeutic interven-

tion in basic research and before any first-in-human trials. For scientists, but more importantly

for patients and doctors it is crucial to know which substances are safe and effective enough to

be tested in humans and which are not. To this end, preclinical research provides the scien-

tific information needed to assess the toxicological safety, the pharmacological efficacy and the

economic feasibility of new therapeutic interventions.

Because preclinical research is conducted using a wide range of different methods and frame-

works and is much less standardized than research it is much more heterogeneous than clinical

research involving humans, it is a challenge to combine data from different preclinical experi-

ments even if these experiments were trying to answer the same scientific questions. For example,

efficacy assessments of a medical treatment against at specific type of cancer can be done based

on various biomedical outcomes (e.g., tumor size, tumor number, survival rate), experimental

setups (e.g., oral or intravenous drug administration), experimental models (e.g., human cell

culture vs. animal models), strains of the same species (e.g., “black 6” mice vs. “BALB/c”

mice) or different species (e.g., mouse vs. non-human primates).

In fact, when it comes to external validity, that is, the generalisability of scientific findings,

such heterogeneity can be desirable if it moves preclinical settings closer to clinical scenarios

(Voelkl et al., 2018). Because replication serves to test whether existing models are able to

predict outcomes that have not yet been observed (Nosek and Errington, 2020), a replication

that is limited to exactly the same experimental settings as in the original experiment does not

provide much additional inferential value to the original experiment. As a result, the importance

of collecting, merging and analyzing data from heterogeneous sources is increasingly recognized

by experimental and theoretical researchers alike (e.g., Searls 2005; Ramirez 2013; Ma’ayan et al.

2014; Bodden et al. 2019). Unfortunately, there are currently no statistical frameworks available

that can rise to this challenge within preclinical settings, especially in the face of the high degree

of heterogeneity mentioned. In addition, a considerable number of preclinical (and clinical)

research findings are only available in the form of summary statistics (Chan et al., 2014), even

though there is increasing pressure from funding agencies, publishers, and regulatory bodies

to make raw data publicly accessible. Hence, a potential modeling framework would need to

be able to incorporate raw data as well as summary statistics from heterogeneous sources in

order to achieve high accuracy for parameter estimation and statistical inference. Furthermore,

the framework would need to prevent potentially new biases from arising, such as confounding,

sampling selection, or cross-population biases, especially regarding causal inferences (Bareinboim

and Pearl, 2016).
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3 Planned research

To overcome the challenges in fusing data from heterogeneous sources, we will develop a statisti-

cal modeling framework that allows the combination of varied data from heterogeneous sources.

This framework will hinge on the assumption inherent to all preclinical research, namely that

the scientific outcomes with regard to a specific biomedical question assessed in heterogeneous

experimental settings are produced by a common underlying biological process. For example, if a

treatment shows similar effects against cancer in different experimental settings, we assume that

these effects are based on the same underlying biological processes, e.g., by influencing a specific

molecular pathway which affects the various outcomes in different experimental conditions.

We start by building the statistical and computational framework of the fusion model based

on common scenarios that are encountered in preclinical research. The framework includes all

relevant experimental settings as well as available sets of data that are likely to be encountered

in the preclinical setting. More precisely, the fusion model will allow us to draw statistical

inferences from a large body of evidence that consists of many small and possibly several big

data tables with a high degree of variety and variability collected in different sets of data from

heterogeneous sources. In the next steps, we test the fusion model using simulated data based

on common experimental settings, test its performance using empirical data from preclinical and

clinical trials in order to assess how well it can estimate the relevant summary statistics, and

improve it based on the test results.

Figure 1 schematically illustrates the conceptual setting of investigating an effect. Different

labs or groups perform experiments and may or may not release information to the community.

Alternative evidence-generating approaches from labs are meta-analyses or expert predictions.

For a more detailed description of the fusion model, please see the Appendix in Section 6
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Figure 1: Schematic illustration of different labs investigating a particular effect. The experimental setup

determines the covariates and introduces potential biases. The output of a lab may be very different,

ranging from single p-values to fully open data.
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4 Budget

Overall, the proposed project is expected to last 18 months of which 6 months are already

financed by the Forschungskredit Candoc of the University of Zurich. The sole costs involved

are the wages for the designated PhD student Servan L. Grüninger (started in 2020). In total,

this amounts to total expenditures of CHF 85’456 of which CHF 27’911 are covered by Candoc.

Hence, we request the amount of CHF 57’545 for the realisation of this research project.

5 Significance of the expected results of the project

Academic researchers, pharmaceutical companies and regulatory bodies are all in great need of

reliable and powerful statistical tools to fuse varied preclinical data from heterogeneous sources,

combine them with summary statistics and draw valid inferences. Reproducible, valid data

and the appropriate statistical models to analyze them not only save time and money, but also

reduce the necessary number of experimental animals and improve the safety and efficacy of

therapeutic candidates tested in humans.

For successful use in preclinical settings, statistical frameworks must be general enough to

allow for versatile application across settings, but specific enough that they can yield mean-

ingful and reliable inferences in these settings. In this project, we can make a major step in

providing tools to properly analyze varied sets of data containing preclinical data tables of dif-

ferent sizes and affected by different methodological and statistical choices. Nowadays, Bayesian

hierarchical models are widespread, yet the proposed fusion approach pushes the methodology

and software implementation to a new level, beyond a mere academic exercise to one with a

significant impact in preclinical research and subsequent scientific domains. Hence, I expect the

results of this project to be welcomed by a range of neighboring scientific disciplines focused on

drug development, disease research, biomedical basic research and applied mathematics, as well

as in other experimental fields such as psychology, in which the integration of heterogeneous

data from different sources also pose a methodological challenge.

6 Appendix: Conceptual description of the fusion model

Every lab produces a set of data, which is denoted as {y ik,x ik}, for lab k, containing the outcome y ij

and covariate (i.e., explanatory variables) x ik, i = 1, . . . , nk. In a publication or repository, the results of

lab k are typically filtered and reported as summary statistics (including for example p-values, confidence

intervals, means and standard errors) but in the ideal case contain actual raw data as well. Filtered

results are denoted as Tk

(
{y ik,x ik}

)
. The examples of Figure 1 are expressed, as

T1

(
{y i,x i}

)
= Pr

(
|ȳ i| > ccrit | H0

)
p-value

T2

(
{y i,x i}

)
=

{
blower, bupper

}
, confidence interval

T4

(
{y i,x i}

)
=

{
n,

1

n

n∑
i=1

y i,
1

n− 1

n∑
i=1

(y i −y i)
2
}
, sample size, mean and variance

Tk

(
{y i,x i}

)
= {y i,x i} set of data, including relevant predictors

In some situations, nothing at all is observed due to, e.g., publication bias. Hence, Tk+1

(
{y i,x i}

)
= Ø

based on the censoring mechanism Pr
(
|ȳ i| > ccrit | H0

)
> α. Of course, this specific type of censoring

not only hides the results of the lab but most likely also the fact that the lab has studied the effect.
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Figure 2: A graphical model representation of a

hierarchical fusion model. Boxes represent data ta-

bles; ellipses represent sets of data at the lab level

or available to us. αk, βk and γk represent biases

and covariate parameters. Dashed arrows represent

optional components that depend on modeling as-

sumptions of the outcome variable. σ2
k represent

generically measurement errors.

To combine the output of all labs in a hierar-

chical model, the effect to be studied is denoted as

a generic parameter vector θ, representing, e.g., a

single value, a parameterized density, spline curve,

etc. Figuratively said, θ can be seen as the param-

eterized largest common component of all studies

involved. For example, if all lab studies are for fe-

male mice with a single treatment dose, then θ is

scalar representing the effect for female mice. If

both sexes are included in the studies with various

doses, θ contains the information for both sexes in-

cluding a parametrization of the dose effect.

Figure 2 provides a schematic, graphical model

representation of a proposed fusion model frame-

work where, simply put, the goal is to infer the effect

∆ parameterized by θ given the different summary

statistics {T1, . . . , TK}. Different labs observe par-

tial information of ∆ through a transfer function hk.

The problem would be fairly standard if the entire

sets of data were available from the labs. We could provide individual models that are combined over the

different labs through the common parameter θ.

As a simple illustration, let us assume that two labs report the success probability of a treatment under

different doses. Further, we assume a logistic relation between the success probability of a treatment and

its dose. At the lab level, we would propose a logistic regression model with link function g, parameters

βk and lab specific biases αk:

g
(
E(Yi1 | x i1)

)
= x

(1)
i1

Tθ + x
(2)
i1

Tβ1 +α1,

g
(
E(Yi2 | x i2)

)
= x

(1)
i2

Tθ + x
(2)
i2

Tβ2 +α2.
(1)

We then employ a Bayesian setting and are therefore able to reuse the knowledge and software components

established in Wang et al. (2017, 2018); Wang and Furrer (2019b,a). The framework will be implemented

in Stan (Gelman et al., 2015) via the R interface rstan (Stan Development Team, 2020). The Bayesian

embedding allows a straightforward extension to all summary statistics. For example, the prior for θi will

yield lower and upper bounds for the effect such that Pr(blower < ∆(θi) < bupper) = 95%. we consider

the published confidence intervals as an observed instance of such credible intervals.

Model (1) is over-parameterized, and more complex models as illustrated by Figure 2 are even more

so. It is only possible to determine a single lab offset which would include all lab specific biases. Even if

several labs work with the same organism, but with slightly different experimental setups, the parameters

are hardly identifiable. We propose to address the identifiability issues and over-parametrization with

the following approaches. First, we include dependencies between the individual labs that report similar

summary statistics. The rationale is that for the same class of summary statistics, similar biases exist

(because often, several studies from a particular lab are published). Such a model is closely related to what

has been developed in Wang et al. (2018) and subsequent work. Although these dependencies introduce

additional parameters, we claim that these will stabilize the model. A second class of approaches are

based on classical penalization methods which we embed in the Bayesian framework (Park and Casella,

2008). We will mainly work with the SLOPE (Sorted L-One Penalized Estimation) selection procedure

(Bogdan and Frommlet, 2020), which has substantially smaller prediction errors compared to the optimal

version of LASSO (Tibshirani, 1996).
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